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VELOCITY POTENTIAL AND FORCES ON 0SCILLATING SLENDER BODIES

OF REVOLUTION IN SUPERSONIC FLOW EXPANDED TO

THE FIFTH POWER OF THE FREQUENCY

By Donald L. Lansing

SUMMARY

The linearized potential theory for supersonic flow about slender

bodies of revolution undergoing harmonic oscillations is presented.

The lift per unit length and the lift and moment coefficients on an

arbitrary shape are expanded to the fifth power of the frequency. The

theory is applied to a rigid cone undergoing harmonic translation and

pitching motions. The results are compared with slender-body theory

for the oscillating case and with Van Dyke's second-order theory for

the steady case.

INTRODUCTION

The problem of determining the aerodynamic forces on bodies of

revolution has been of considerable theoretical and experimental inter-

est for some time. Until recently, the aerodynamics of lifting sur-

faces have been of more practical importance since the forces developed

on an aircraft fuselage are usually small in comparison to those devel-

oped on wing surfaces. However, many of the vehicles designed over the

past few years employ either very small-aspect-ratio lifting surfaces

or none at all. The predominant air forces on such configurations are

associated with the shape and flexibility of the body.

There are a number of theoretical methods for predicting the forces

on bodies at supersonic speeds; the Mach number range and body shapes

to which these methods are applicable vary considerably. For bodies

fixed in the airstream, such approaches as linearized potential theory

(refs. i and 2), second-order slender-body theory (refs. 3 and 4)3

shock-expansion theory (ref. 5)3 the tangent-cone approximation (ref. 6),

Newtonian theory (refs. 6 and 7), methods based upon the use of complex

variables (ref. 8), and the piston-theory approximation (ref. 9) are

available. In unsteady flow the choice of methods is somewhat more

limited. Among the techniques applicable to unsteady problems are the



Munk-Jonesmomentumtheory (ref. lO), linearized potential theory
(refs. ll and 12), extended shock-expansion theory and a variational
procedure (ref. 13), and various quasi-steady theories based upon steady-
state results.

Someinsight into the relative merits of the various methods appli-
cable to unsteady flow has been provided by a recent experimental and
analytical investigation of flutter of conical shells (ref. l_). In
this study flutter calculations were madeover a wide Machnumberrange
and comparedwith experimental results. Potential theory, momentum
theory, Newtonian theory, and several quasl-steady methods were used in
making the calculations. The potential-theory aerodynamics employed
in this investigation are derived herein.

The present paper is an extension of the previous work of refer-
ence ll in which the velocity potential was expandedto the first power
of the frequency. Another approach to calculating potential-theory
aerodynamics on oscillating slender bodies was recently set forth in
reference 12, which contains a description of a method for computing
the pressures acting on the body by evaluating the potential and sev-
eral of its derivatives by numerical processes. In the present work,
the perturbation potential for an arbitrary slender body of revolution
has been analytically expandedto the fifth power of the frequency.
Expressions are given for the lift per unit length and the llft and
momentcoefficients. The coefficients of the powers of the frequency
are obtained in the form of integrals involving the body shape and
downwash. These general expressions are then evaluated for a rigid
cone undergoing harmonic translation and pitching oscillations. Cer-
tain functions of Machnumberand cone semiapex angle appearing in the
expressions for the forces are tabulated. The results are compared
with slender-body theory for the oscillating case and with Van Dyke's
second-order theory for the steady case.

SYMBOLS

a_

Ai(n)

A(n)(x)

free-stream speed of sound

functions of _ tan 8 and M associated with lift

per unit length on a cone (eqs. (A1))

functions associated with lift per unit length on an

arbitrary shape (eqs. (lla) to (llf))

b body length



CL

c_

_(x)

total-lift coefficient (eqs. (13) and (14))

total-moment coefficient (eqs. (13) and (14))

source or doublet strength
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i
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f(x) =_(x)

h

k

z(x)

L

M

Mxo

Mn

P

Pn, Qn

amplitude of translation

reduced frequency, cob
2U_

lift per unit length

total lift, (eq. (lOa)) (positive down)

components of total-lift coefficient derived from

potential theory (eq. (13))

components of total-lift coefficient derived from

slender-body theory (eq. (14))

free-stream Math number

total moment about x = Xo_ (eq. (lOb)) (positive,

nose up)

components of total-moment coefficient derived from

potential theory (eq. (13))

components of total-moment coefficient derived from

slender-body theory (eq. (14))

perturbation pressure acting normal to body surface

functions of _ tan 5 associated with forces on a cone

(eqs. (A2) and (A3))

q

R(x)

free-stream dynamic pressure,

body radius



4

polar radius of deforming body

S(b)

t

U_

xo

x0
_0 =-6-

body cross-sectlonal area, nR2(x)

base area of cone_ _b2tan28

time

free-stream velocity

distance from nose to pitch axis

x, r_8 a system of cylindrical coordinates with X-axis in

direction of free stream and with origin located at

mean position of body nose

downward displacement of body center line for arbitrary

time-dependent motion

Z(x) amplitude of Z(x,t) for harmonic motion

lln(x,r ) integrals associated with the expanded velocity potential
of an arbitrary body (eqs. (8a) to (8f))

lln(X ) = [-Iln(x,r)_r=R(x )

I:rn(x ) = _ IIn(x,r J
r-=R(X)

!IIi, II12,1113 integrals associated with velocity potential of an

arbitrary body (eqs. (Sa), (St), and (50))

angle of attack, or amplitude of pitch

5 cone semiapex angle

function associated with perturbation pressure (eq. (9))

L
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_(x,r,e )

(D

free-stream density

perturbation velocity potential for an arbitrary

time-dependent motion

amplitude of perturbation potential for harmonic

motion

distribution of sources as defined in equation (4)

function associated with velocity potential (eq. (7))

frequency of oscillation

ANALYSIS

The differential equation for the perturbation velocity potential

is given and the solution appropriate to the lifting case is obtained.

The solution involves a distribution function which is determined by

applying the boundary condition of tangential velocity at the body sur-

face. The potential, surface pressures, and lift per unit length are

then expanded to the fifth power of the frequency. A more detailed

derivation of the fundamental solution of the governing differential

equation may be found in references ii and 12.

The Governing Equation and the Fundamental Solution

The perturbation velocity potential _(x,r,@,t) for the unsteady

linearized supersonic flow about a body of revolution must satisfy the

partial differential equaLion

_x 2 _r 2 r _r r2 _82 a_ _t 2 a_ _x _t

-0

where x,r,@ is a system of cylindrical coordinates moving with the

flight velocity U_ in the negative x direction (see fig. l(a)), a_

is the free-stream speed of sound, M is the free-stream Mach number,

and _2 = M 2 _ 1. For harmonic motion, _(x,r,@,t) = _(x,r,e)e imt and

the governing differential equation becomes

_x 2 8r 2 r _r r2 _82 2 _ + 2i --a__-x = 0 (i)
moo
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In the linearized problem the perturbation potential is the sum of

two types of potentials: a symmetric potential associated with body

thickness which gives rise to no resultant lift or moment, and an anti-

symmetric potential associated with angle of attack, camber, and time-

dependent motions which is used to determine total llft and moment. The

remainder of this paper is concerned with the antisymmetrlc type of poten-

tlal insofar as it applies to harmonic motions.

By direct substitution it may be verified that equation (1) is

satisfied by the expression

_(x,r,@) = cos @ _l(x'r) (2)
_r

where _l(x,r) is a solution of the equation

_x 2 8r2 r 8r a 2 _l + 2i s_ML°8x = 0
(3)

The form of the potential given in equation (2) is antisymmetric with

respect to the plane e = _ the x,y plane, and is therefore appropri-

ate for determining lifting forces.

The solution of equation (3) corresponding to the potential _s of

a moving point source of outgoing waves with frequency _3 is known to
be

_S -

loi cos( ,Jx2_ 2r2)
2_ k/x2 _ _2r2

=

in which _ --_-_. The potential at a field point (x,r) resulting

from a distribution of such sources along the X-axis of local strength

_(x)dx is then

1 F x-jBr _(_)e -:iM_(x-')cOs(m {(x- _)2 - [32r2 ) d'

q:)l(x'r) =- _ v O V(x- B)2_ _2--_
(4)

This potential is also a solution of equation (3). The upper limit of

the integral indicates that only that portion of the line of sources

L

1

1

9

5
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within the upstream Mach cone with vertex at point x_r is taken into

account.

Equations (2) and (4) will be used to determine the potential and

forces on a lifting body of revolution. It is convenient to change

from the variable _ to the variable _ by the substitution_

x - _ = Dr cosh _, so that

-i x
eosh

Dr f(x - _r cosh _)exp(-iM_r cosh _)cos(_r sinh _)d_
_l(X,r) --- j o

where f(x) = i_ ?(x). The differentiation indicated in equation (2)_
2_

which converts the source distribution into a doublet distribution, may

now be carried out yielding the desired form of the potential

where

_(x,r,@) = _ cos e(iM_Ill I + mill 2 + 1113) (5)

-ix

IIIl = #cosh _ f(x - _r cosh _)exp(-iM_r cosh _)cos(_Gr slnh _)cosh _ d_
_0

(Sa)

-1 x

#cosh -_ f(x - _r cosh _)exp(-IM_r cosh _)sin(_r slnh _) slnh _ d_
III 2

Uo
(5b)

III5 =

-1
_oCOSh x

6r
f'(x - _r cosh _)exp(-iM_r cosh _)cos(a_r slnh _) cosh _ d_ (5c)

and the prime denotes differentiation with respect to the argument.

(In this and one further differentiation of _l(x,r) to follow it is
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assumed that f(O) = f'(O) = 0. This assumption is consistent with the

fact that, as will be shown subsequently, f(x) is proportional to

The Determination of f(x) From the Boundary Condition

The principal boundary condition to be satisfied is the requirement

that the component of the fluid velocity normal to the body surface must

vanish; that is, the flow must be tangent to the surface. Consider a

slender body undergoing small time-dependent displacements about its

equilibrlum position. The shape of this body may be described as the

superposition of a symmetric body of revolution, with local radius R(x),

about a mean camber llne or center line which is undergoing small time-

dependent displacements about its equilibrium position. See the following
sketch:

L

1

1

9
5

_X
+

_ ._Camber line
_X

Body thickness Time-dependent motion

Z Z Z

Sketch 1

Thus, the deformation at any time may be considered as resulting from a

vertical translation, with no rotation, of each vertical cross section

of the body of revolution. Let _(x,t) be the downward displacement

of the center line of the body from the X-axis, and let R be the polar

radius of the deforming body. See figure l(b) and sketch 1. Applying

the law of cosines to the triangle shown in figure l(b) gives the fol-
lowing relation:

R2(x) :_2 ._2+ _ cos e

Solving for R and discarding the negative root results in

= R_ - Z--2sin20 - _ cos 8
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Approximating for small values of _ gives

= R(x) - _(x,t) cos e

L

1

1

9
5

The llnearized form of the boundary condition then requires the

radial velocity on the mean body surface, r = R(x), to be equal to

8R + _SR, where U_ is the free-streamthe expression, U_ 8-_
velocity.

As in the case of the potential, the boundary condition may also be con-

sidered in two parts: one involving R(x) associated with the thick-

ness distribution, which is of no concern here 3 and the other involving

Z(xjt) associated with the displacement. This latter part of the bound-

ary condition takes the form

cos
For a body undergoing harmonic motions, let Z(x,t) = Z(x)e i_t.

boundary condition then becomes

lira ---_= -cos 81U_ 8Z(x) + Im Z(x)_
r-_R(x) 3r 8x

The

The left-hand side of this expression can be evaluated by using equa-

tions (5). Carrying out the indicated differentiation, restoring the

variable _ by the substitution, x - _ = _r cosh _, and approximating

the integrals obtained for small values of r gives

whence

llm ____: -f(x) cOs !

r_R(x) 8r R2(x)

f(x) = ?(x) = R2(x)[U" 3Z(x) + _Z(x)_2_ _x (6)
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Expansion of the Potential and the Forces to the Fifth Power

of the Frequency

Expanding the Integrands of equations (Sa), (Sb), and (5c) in

powers of K and combining according to equation (5) results in the

following expression to the fifth power in a:

where

and

_(x,r,e) = 13cos 8 _(x,r)

1 _2Br ii2(x,r)_(x,r) --IIo(x,r)+ i_ n1(x,r) +

. i K4(_r)3II_(x,r)- I_MM_3(_r)2 iI3(x,r) 2-[6

iM aS(_r)4 II_(x,r)+i-/5

(7)

(8)

L
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cosh-l#

IIo(x,r) = 70 f'(x - _r cosh _)cosh _ d_
(8a)

eosh-l#
IIl(X,r) = -_r .# f'(x - _r cosh _)d_

0
(8b)

cosh-l_-_
II2(x,r) = -#rM 2 # f'(x - _r cosh _)cosh _ d_

_'0

cosh-l_x

+ (M2- i) 7 _r f(x- _r cosh _)d_

0

(8c)



ll

-1 x

F c°sh _-TiI3(x,r) =-BrM 2 f'(x - Dr cosh _)d_
_0

-lx

cosh f(x - _r cosh _)eosh _ d__-_

_0

(8a)

L
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_4(x,_)___r_4 [ °°_-_--Gr f,(x - Dr cosh _)cosh _ d_

uO

-1

_r f(x - _r cosh _)d_

_0

+(_-_- 3)_o

-1 x
cosh --

_r f(x - Br cosh _)cosh2_ d_

-1 x

II_(x,r) = -Sr_ .#cosh 6--rf'(x - Br cosh _)d_

_0

-lx

+ + 15 f(x - Dr cosh _)cosh _ d_

_0

(8e)

+ (_ - IOM 2- 19) fO cOsh-l_r f(x - _r cosh _)cosh3_ d_
(8f)

It may be noted that each of the equations (8a) to (8f), is a solution

of equation (3).
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The perturbation pressure acting normal to any point of the body
surface is

Using equation (7) gives

p = -pu_ cose _(x)

where

A(X) _(x,r) + i _ )_
= L _x _ _(x,r r=R(x)

(9)

L

1

1

9

and the differentiation with respect to x is to be carried out before

the substitution, r = R(x), is made. The lifting component of this

pressure is p cos e; hencej the lift per unit length Z(x) is

The total lift L

_(_) -- R(_) Z_ p cos e _e

= -_pu_ R(x)A(_)

and the total moment _M_0 about x = x0 are then

L = z(_)_ = -_p_uoo_ R(x)A(_) (lOa)

MXo =

b

(lOb)
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Wlth the aid of equation (8) in which _ is now replaced by

m_ M_ and equations (8a) to (8f)_ the expression for _(x) may be

u® _e

written as

= _A(1)(x) + l_2A(2)(x ) I/,_hSA(5)
A(x) A(0}(x) + i U_ _k_/ - _] (x)

1/_h_A(£)( __._i[____hgA(9)(x)

where

A(0)(_)= no'(_)

(_)

(lla)

A(1)(_)= _ ni'(x)+ IIo(X
(rib)

A(2)(x) = R(x) II2'(x ) 2_ 2 (llc)

A(3)(x) =__i/M--.h2B2\_2/ _ R(x)IM2 _ R(x)l13'(x) - 3B p l12(x) 1
(lla)

'(x) - 14B2"II3(x _ (lle)

and

1 M 4 (ill)

l

iio(x)-i In(X,r) 
-- "-'r=R(x)

IIn'(X) = _x IIn(X' r_ r=_R(x)
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The integrals 3 IIn(x ) and IIn'(X), appearing in equations (lla)

to (ill) must be evaluated for each particular body shape and deformation

under consideration. If the displacement of the center line and the

body radius can be represented by polynomials, the evaluation of these

integrals in closed form is straightforward but tedious. The results

obtained for IIn(X) and IIn'(X ) involve expressions of the form

_x 2 _2 R2(x)and cosh-l_ x _- _(x " Thus, for simple body shapes and

deformations, analytical procedures may be used to evaluate the lift

and moment from equations (10).

Slender-Body Aerodynamics

A considerable simplification of the above results may be obtained

by introducing the so-called "slender-body" approximation; that is, for

smooth thin bodies the pressures acting on the body surface are essen-

tially the same as those predicted on the X-axis. The expression for the

llft per unit length on an arbitrary slender body will now be obtained as

a limiting case of the equations developed previously. This result is

subsequently used to evaluate the llft and moment coefficients on slender

cones for comparison with the expansion procedure.

By making the substitution, _r cosh _ = x - _, in equations (_a),

(Sb), and (Sc) and approximating the three integrals for small values

of r, the potential becomes

_(x,r,e)--eose f(x)
r

which is now independent of the Mach number. As before,

L

1

1

9
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z(x 
The pertubation pressure acting normal to the body surface is

P = -% r_(x) _x
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and the lift per unit length is

L

1

1

9

For a body at a fixed angle of attack, with co = O, and with

Z(x) = tax, the following well-known results of slender-body theory are

obtained:

7.(x) = -2o.,q dS
dx

L = 7,(x) dx =-2o, q S(b) (12a)

;o _

where S(x) = _ R2(x) is the cross-sectional area, _0 = _-_, and V

is the volume of the body. A closed body, S(b) = O, therefore develops

no total llft, only a moment which tends to increase the angle of attack.

APPLICATION TO A CONE AND DISCUSSION

The expressions for the llft and moment developed previously for

an arbitrary body of revolution have been evaluated to the fifth power

of the frequency for a rigid cone undergoing harmonic pitch and trans-

lation. The final results are given in this section; further details

in the derivation of the expressions presented here are given in the

appendix. The corresponding expressions obtained from equations (12)

have also been evaluated for the cone and are presented for comparison

with the expansion procedure.

For a rigid body undergoing harmonic translation and pitch, the

amplitude of the motion is Z(x) = h + _(x - Xo) , see figure 2, where

h and m are the amplitudes of translation and pitch, respectively,
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and x 0 is the distance of the pitch axis from the nose. In the fol-

lowing application, h is assumed positive down and _ is positive

when the nose is up. With these conventions, a positive lift acts

downward and a positive moment acts nose upward.

Let the radius of the cone be R(x) = x tan 8, where 8 is the

semiapex angle 3 and let b be the length of the cone. Denote the base

area of the cone, _b2tan28j by S(b). The lift and moment coefficients

are found to be

L
CL=

q S(b)

Mx o

C_ = qb S(b) = -4_ tan 81M1 + ikM2)h + (M3 + ikM4)_ _

(_3)

L

1

1

9
5

where q is the free-stream dynamic pressure, i p_U 2, k = b_ , and

L1 = - _441)k2+ l__A08 (3)k4

_- + -

(13a )

(13b )

=I (0) i ^(2) (i)) 4_i_L, _A o +[_(_O -A_ +3 k2

(13c)

(13d)
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(13f)

(13h)

The quantities, _0)_i)... _(5) and A_O),A(ll),... A_ 5),

are functions of Mach number and the product, 8 tan 5. Tables I to V

present values for various cone angles and Mach numbers. The calcula-

tions were carried out on an IBM 650 electronic data processing machine

to eight significant figures. The values in the tables have been arbi-

trarily limited to six decimal places. The expressions from which

_n) may be evaluated are given in the appendix as equations (A1), (A2),

and (A3).

For a cone undergoing rigid translation and pitch, slender-body

theory (eqs. 12) gives
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where

% = q s(b-----'_

c_= -_bs(_

-- 2 1{2
3

"L2 =1

1

MI

- _ _o
L_ = 3 "

= - .5

(14a)

(_b)

(i_c)

(l_d)

(l_e)

_=2. _o3

(l_f)

These results may also be obtained from equations (13) by using the

following) limltingl forms41)for_small 5:424344)--)= ) = 45) = 0

0 = _ = 2_ tan 5
tan 5

(_) A(_5) = 0
A(].2) =A(13) --A I =

A(2) 3 _ A(1) i _= _tan 5 = _tan 5

L

i

1

9
5
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Figure 3 shows the ratios, _ tan 5 Lnl_ n and _ tan 5 MnIMn, plotted

1o
against Mach number. These calculations are for 5 = 72 , Xo = l, and

the two values of k, 0.05 and O.lO. It should be remembered that Ln

and Mn are independent of Mach number and are therefore constant.

The figures show that although L2, L3, M2, and M 3 depend upon Mach

number, the variation is small and the slender-body approximation for

these quantities appears to be sufficiently accurate over a fairly wide

Mach number range. On the other hand, L1, L4, M1, and M 4 vary

rapidly with Mach number and differ considerably from the corresponding

expressions obtained from the slender-body approximation.

It should be pointed out that the eight ratios plotted in figure 3

tend to unity as 5-_ 0° but not as M-_ 1. This behavior does not

appear to be a limitation of the expansion procedure alone. The theory

breaks down at very low supersonic Mach numbers since the potential

(eq. (4)) becomes meaningless as M -_ 1. For cones, it can be shown that

the expansion of the integrands of the integrals in equations (5a), (Sb),

1 Therefore,
and (5c) to terms of the order k5 is reliable for _ <

the lower limit of the Mach number range for which the theory is appli-

cable is M = _l + 2k.

The upper limit of the range of Mach numbers and cone angles to
which the results obtained for the unsteady case are likely to be appli-

cable can be determined by considering the results for the steady case.

_n)In particular, it may be pointed out that A -_ 0 as _ tan 5 -+ 1 so

that the llft and the moment vanish. This is easily seen in the steady

case, k = 0, for which the lift and moment coefficients given in equa-

tions (13) reduce to

CL = -2_i - (_ tan 5) 2

CM_ = _ -

I (15)
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This behavior is readily explained on the basis of the mathematical

solution of the problem by recalling that the only portion of the doub-

let distribution along the X-axis (eqs. (9)) which influences a point,

x,x tan 8_ on the cone surface lles within the upstream Mach cone with

vertex at point x,x tan 5 and semiapex angle, tan -1 _. When

tan 8 = l, the Mach cone and the conical body are tangent (along a

ray passing through the vertex of each), and the effect of the doublet

llne has vanished. From a physical point of view, linear theory is

restricted to Mach numbers for which the body lies well within the

downstream Mach cone attached to the nose. This condition is obviously

violated for 8 tan 5 _ 1. It should not be inferred, however, that

the llft and moment for all body shapes decrease with increasing Mach

number. For example, the present theory predicts an increase in llft

with increasing Mach number on a semiparabolic body. (See refs. ll

and 12. )

Figure _ also shows a comparison of the lift-curve slope of an

inclined cone with 5 = as predicted by the present theory

(eqs. (lS)), slender-body theory (eq. (14)) with k = O, and Van Dyke's

second-order theory (ref. 3). Experimental measurements of forces on

cones in steady flow (refs. 15 and 16) indicate that CL = -2a is a

useful approximation even for _ tan 5 close to unity. Hence, on the

basis of the behavior of equations (lS) for the steady case, it may be

expected that the results obtained in equations (13) for the unsteady

case are limited to values of _ tan 5 less than about one-half. In

addition to Mach number and slenderness limitations, the frequency
must be small so that the flow about the cone remains attached to the

surface.

L

1

1

9

CONCLUDING REMARKS

The linearized potential theory for supersonic flow about slender

bodies of revolution undergoing harmonic oscillations has been developed

for the purpose of expanding the lift per unit length and the lift and

moment coefficients on an arbitrary shape to the fifth power of the fre-

quency. It is indicated that the expansion obtained is limited to a

range of Mach numbers M and reduced frequencies k for which

k <l

M 2 - 1 = 5" This parameter sets an upper limit to the frequency range

and a lower limit to the Mach number range over which the results may
be used.
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The theory has been applied to a rigid cone undergoing translation
and pitch, and the results are comparedwith slender-body theory for the
oscillating case and with Van Dyke's second-order theory for the steady
case. A comparison of the results obtained in the steady case with
experimental measurementsindicates that the theory is limited to Mach

numbers M and cone semiapex angles 8 for which _M2 - 1 tan 8 is
less than about one-half. It has also been found that slender-body
theory is not a consistently accurate approximation to potential theory.

L
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Langley Research Center_
National Aeronautics and Space Administration,

Langley Air Force Base, Va., January 15, 1962.
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APPENDIX

DERIVATIONOFTHEQUANTITIES_n) ASSOCIATEDWITHTHELIFT ANDMOMENT

ONA CONEUNDERGOINGRIGID PITCHANDTRANSLATION

For the case of a cone undergoing rigid pitch and translation, the
amplitude of the harmonic motion is Z = h + e (x - Xo) where h and

are the amplitudes of translation and pitch and xO is the pitch-axis

location. The first step in obtaining is to evaluate the inte-

grals IIn(x ) and IIn'(X ) with use of equations (8a) to (Sf). To

8Z
this end, it is convenient to write the expression, U_ _x + ia_,

appearing in equation (6) in the form

L

I

i

9
5

U= _xZ + ia_Z = U_(Wo + WlX )

where W 0 = _(i- 2ik_o) + 21k h,

and b is the length of the cone.

appearing in the integrals IIn(X )

Wl _ 2ik _b -- Xo
b % k =_-_, x0 =-b-,

The distribution function f(x)

and IIn'(X ) then becomes

f(x)=u 2(x)(Wo+Wlx)

= U_x 2 tan%(Wo + WlX )

It is now advantageous to split the distribution function f(x) into

two parts, f(x) = f0(x) + fl(x) where fo(x) = U_ tan25W0x2 and

fl(x) = U_ tan25WlX3 , and to carry out the evaluation of the integrals

and the functions A(n)(x) for each part separately. The following

definitions are useful: _ = _ tan 5, WO = U_Wo tan25, WI = U_WI tan_,

I0 = cosh'l i_ and I1 = i_i 2
" _ •
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Results for fo(X) = WO x2

The integrals, lln(X ) and lln'(X), are found to be:

no,(X)= _oll

lq'(x): -@oX_Io

i - 13 i_+(_+_)_o+(-_ _)_
J

II 4 (x) = 2Wox I0 + B I + M 2 i

2n n I
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- _--qIo + ---+ I
2q 2

Substituting these values into equations (lla) to (ill) and
rearranging gives

A(n)(x) =_oAo(n)x n

where

(o)
A0 = P0 (_a)

1M2p (Alb)

M 2A_2__(7)(_3+P_) (Aic)

i "M .2,4 2
(Aia)

L

1

1

9
5

and

(4)

:±f_M_4r_@ M4pi2+ M_i3

(Ale)

(Aif)

P0 -- I1 (A2a)

1
Pi =_Ii--32 nlo (_)
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p e = 1 nio. 1 ii

P3 = 3nIo - 4_2II

P4 = -3NIo + 5N2II

P5 =-I 3 _ +_3) IO +_ _311

P6 = 13_ +9_3) IO - 19-__2II

P9 = -15n3Zo + ne + -3 n4 II

19 n3I 0 (5 q2 +9_)I1Plo--T -

P13 _(_ n3 13_ _2l-C_)Io + I-i_ + ___!¢)TI= + "_-

PI4 = (14-_3 + i_ nS)Io-(_ _2 +_16 n4) II

(A2c)

(_g)

(A2_h)

(A2J)

(AP__k)

(A2_)

(A2m)
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The llft and moment are then found from equations (lO) and (ll):

F (o) (i) (2)

L : -4Woq _ tan5 S(b)[_-_---+ ik 2Ao + k2
A_

3 2

-k4 -- +4/$)9 ik5 445)1105

Mxo=-4Woqb _tan5 S(b)[(3
+ . 2 _^_(i)

4_o_(_)

L

1

1

9
5

Note that W 0 is of the form, a + bk. If the preceding two

equations are multiplied out and rearranged in powers of k the

resulting expression is correct only to k5.

The integrals,

Results for fl(x) =% x3

IIn(X ) and IIn'(X), are found to be:

II1 = 3QlX3 + _ _3 io + 3a21
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i
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ii4 =

•

+

2on l_O

+I" ].o% 20 9

5

2n
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From equat±on_(Ua) to (i_)

in which tA_n) is defined as

replaced by Qn_ and

A(=)(x)= WiA(in)xn+i

_n) in equatlons(AI)with Pn

(A3a)

(A3b)

L

1

1
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5

Q2 = 3n10 - (i + 2n2)I I (A3c)

Q3 = (9_ +_ _3)I0- _ _2I 1

= _ + -_- _2I 1

(A3d)

(A3e)

(A3f)

(A_)

(A_)

Q8 " (42--_-U3 + !_ ug)Xo-(_ U2 + 9B%2U_)_ (A31)
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_ _(45_3 +_ _5)i 0 +(5 112+ 245-_- _4)I I (A3_)

(A3k)

L

1

1

9
5

Qll = _(_ n3 + _ nS)io + (_ 3 n2 857 n4 128 n6)i 1+o_- +-5-

Q12 = (_ _3 + _ _5)I0 + (_ _2 477 _4 _ 48_6)I I

(A3_)

(A3m)

(A3n)

(A3o)

The lift and moment are

L = -2Wlq B tan 8 b S(b)I3A_ 0)
__A_ 2A(2) ___+ Ik __i) + k2 _I - ik3

2 5 9

_ k4 + ik 5
2-F- -_-_J

MXo =-2Wlq 8 tan8 b2 S(b)_l_

_o\(o) ik__2 -_xo_A(1)
3')"h + _,_ _/_-

+ _/1 J

9 _°) A_3) - k46 12 21
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